Exercise 14

Given that $\lim _{x \rightarrow 2}(5 x-7)=3$, illustrate Definition 2 by finding values of δ that correspond to $\varepsilon=0.1, \varepsilon=0.05$, and $\varepsilon=0.01$.

Solution

According to Definition 2, this limit is equivalent to

$$
\text { if } \quad|x-2|<\delta \quad \text { then } \quad|(5 x-7)-3|<\varepsilon
$$

for all positive ε. We're looking for a number δ that's greater than $|x-2|$.

$$
\begin{gathered}
|(5 x-7)-3|<\varepsilon \\
|5 x-10|<\varepsilon \\
|5(x-2)|<\varepsilon \\
5|x-2|<\varepsilon \\
|x-2|<\frac{\varepsilon}{5}
\end{gathered}
$$

If $\varepsilon=0.1$, then choose

$$
\delta=\frac{\varepsilon}{5}=\frac{0.1}{5}=0.02
$$

If $\varepsilon=0.05$, then choose

$$
\delta=\frac{\varepsilon}{5}=\frac{0.05}{5}=0.01
$$

If $\varepsilon=0.01$, then choose

$$
\delta=\frac{\varepsilon}{5}=\frac{0.01}{5}=0.002
$$

